Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system

نویسندگان

چکیده

Abstract Microplastic pollution of water and ecosystem is attracting continued attention worldwide. Due to their small sizes (≤5 mm) microplastic particles can be discharged the environment from treated wastewater effluents. As microplastics have polluted most our aquatic ecosystems, often finding its way into drinking water, there urgent need find new solutions for tackling menace pollution. In this work, sustainable green photocatalytic removal activated by visible light proposed as a tool water. We propose novel strategy elimination using glass fiber substrates trap low density such polypropylene (PP) which in parallel support photocatalyst material. Photocatalytic degradation PP spherical suspended irradiation zinc oxide nanorods (ZnO NRs) immobilized onto fibers flow through system demonstrated. Upon two weeks under reduced led reduction average particle volume 65%. The major photodegradation by-products were identified GC/MS found molecules that are considered mostly nontoxic literature.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen doped TiO2 for efficient visible light photocatalytic dye degradation

In this study, Nitrogen doped TiO2 photocatalysts were prepared by the sol gel method and physicochemical properties were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM), photoluminescence, and energy dispersive X-ray spectroscopy (DRS) techniques. The XRD data indicated that the nanoparticles had the same crystals structures as the pure TiO2</su...

متن کامل

Visible light photoactivity of Polypropylene coated Nano-TiO2 for dyes degradation in water

The use of Polypropylene as support material for nano-TiO2 photocatalyst in the photodegradation of Alizarin Red S in water solutions under the action of visible light was investigated. The optimization of TiO2 pastes preparation using two commercial TiO2, Aeroxide P-25 and Anatase, was performed and a green low-cost dip-coating procedure was developed. Scanning electron microscopy, Atomic Forc...

متن کامل

Visible light photocatalytic activity of MWCNT/TiO2 using the degradation of methylene blue

Multi-walled carbon nanotubes (MWCNT)-doped TiO2 thin films were synthesized by the dip-coating method. The obtained products were characterized by SEM, EDX, XRD, and UV-vis absorption spectroscopy. The XRD patterns showed the presence of anatase phase. Absorption spectrum of MWCNT-doped TiO2 revealed a red shift in the optical absorption edge due to carbon doping. The photocatalytic properties...

متن کامل

Synthesis of nanocomposite based on Semnan natural zeolite for photocatalytic degradation of tetracycline under visible light

This study investigated the photocatalytic behaviors for the nanocomposite of TiO2 P25 and Semnan natural zeolite in the decomposition of tetracycline under visible light in an aqueous solution. The structural features of the composite were investigated by a series of complementary techniques that included X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning elec...

متن کامل

Photocatalytic Degradation of Isopropanol Over PbSnO3Nanostructures Under Visible Light Irradiation

Nanostructured PbSnO(3) photocatalysts with particulate and tubular morphologies have been synthesized from a simple hydrothermal process. As-prepared samples were characterized by X-ray diffraction, Brunauer-Emmet-Teller surface area, transmission electron microscopy, and diffraction spectroscopy. The photoactivities of the PbSnO(3) nanostructures for isopropanol (IPA) degradation under visibl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Hazardous Materials

سال: 2021

ISSN: ['1873-3336', '0304-3894']

DOI: https://doi.org/10.1016/j.jhazmat.2020.124299